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Drawing on the work of former Harvard PhD student, Melissa Whitney, now at 
Weil, Gotshall and Manges LLP, New York,

 Motivating application
 Challenges of model uncertainty
 How environmental risk assessment proceeds
 Limitations when applied to epidemiological data 
 Bayesian model averaging as a tool for handling 

model selection uncertainty
 Comparison of some common approaches to BMA
 Discussion
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 widely used early to mid 20th century in 
transformers, capacitors, and electric 
motors

 Health danger firmly established in 1970s 
with poisoning from  contaminated rice 
oil, and evidence of carcinogenicity based 
on animal studies

 Though US banned production in 1979, 
PCBs considered a ubiquitous, persistent 
environmental pollutant.

 PCBs store in animal fat and 
bioaccumulate through food chain. 

 90% of current-day exposure via diet, 
especially dairy, meat, fatty fish

Well-designed studies yield different conclusions
◦ Methods to assess exposure/outcome differ
◦ Varying methods to analyze data and adjust for 

potential confounders (model selection)
◦ Levels of exposure vary across study
◦ Extreme observed exposures within a given study
◦ Concurrent exposures to other pollutants such as 

Mercury, Dioxins (possible effect modification)
◦ Actual chemical exposure different (209 PCB 

congeners)
◦ Beneficial effects of supportive environment may 

protect some population subgroups
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 Cohort study of 71 mother/infant pairs 
 Our subset – 88 mothers who breastfed
 Exposure: log(sum of 3 main PCB congeners * 

duration of breastfeeding)
 Outcome: Kaufman Assessment Battery for 

Children (at 42 months old)
 Other possible covariates: maternal age, BMI, 

alcohol consumption, socioeconomic status, 
HOME score, and gender

Covariates tend to be quite correlated 
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Lots of noise, 
lots of 
correlation

Full model:

where:

P= 7 possible predictors  27 = 128 possible 
models, assuming no interactions or other 
functions of covariates

ܻ݅ ൌ 0ߚ ൅ ሻ݅ܤܥ1ሾlogሺܲߚ ∗ ሿ݊݋݅ݐܽݎݑ݀ ൅ ሻ݅ܧܯܱܪ2ሺߚ
൅ ܫ݅ܯܤ3ሺߚ ሻ ൅ ݎ4ሺ݃݁݊݀݁݅ߚ ሻ ൅ ݈ܽ݊ݎ݁ݐ5ሺ݉ܽߚ ሻ݈݅݋݄݋݈ܿܽ
൅ ܧ6ሺܵߚ ݅ܵሻ ൅ ݈ܽ݊ݎ݁ݐ7ሺ݉ܽߚ ܽ݃݁݅ሻ ൅ ݅ߝ  
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 Consider variety of plausible models, select 
one, and draw inferences from single, “final” 
model ignoring plausible alternatives

 Underestimates true variability and 
uncertainty due to model selection process

 Results in over-confident, risky decision-
making (Draper, 1995)

Suppose we 
1) Fit
2) Test
3) Only if we reject H0 , then calculate a 

confidence interval on β1

What properties do we expect the confidence 
interval to have?  

0 1i i iY X    

0 1: 0H  
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True coverage probability is

where Power() is Pr(reject H0|  is true value)

Note that coverage probability is 0 when  =0, 
and approaches  only as  grows large
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Unconditional 
confidence 
intervals look as 
expected

None of the 
conditional 
confidence 
intervals cover 0
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Unconditional 
confidence 
intervals look as 
expected

Most of the 
conditional 
confidence 
intervals cover 
=.05, but are 
clearly skewed

Unconditional 
and 
conditional 
confidence 
intervals are 
very similar
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Traditional practice of picking a best model 
then reporting confidence intervals for 
coefficients may be biased, especially in 
settings where there is a high degree of noise.

Implications particularly problematic in 
environmental risk assessment where we use 
estimated coefficient of exposure of interest  
to predict a “safe” dose.    Lets take a brief 
diversion to see how this works.  

Step 1: Establish that exposure of interest has an 
adverse effect
Step 2: Benchmark Dose (BMD) solves

P(d) – P(0) = BMR
where P(d) is probability of an adverse effect and 
BMR (benchmark response) = 0.01, 0.05 or  0.1 
Step 3: Compute lower                                       
confidence limit, BMDL
Step 4: Linearly extrapolate

Estimated dose response curve
Upper limit on dose response curve

BMD
BMDL
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Need to specify a threshold level of Y that can be 
considered adverse.  E.g.
 Pick a cutoff that has some clinical meaning
 Scoring below 75 on an IQ test
 Having a BMI above 25 (or 30?) 
 Scoring below 85 on K-ABC assessment
 Pick a cutoff that corresponds to a lower (or upper) 

percentile (usually 1% or 5%) of general population

To do analysis, can dichotomize outcomes 
(inefficient) or do regression analysis and then 
compute the tail probabilities

Suppose 

Where X1 is exposure of interest and X2 is a confounder. If lower
values of outcome are “adverse”, then

And solution to P(c)-P(0)=BMR is:

where 

And solution is the same for all values of the confounder, X2

ܦܯܤ ൌ
ߪܳ
1ߚ
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Where lower outcome are adverse, Budtz-
Jorgensen (2001) provides an approximation 
to BMDL that accounts for fact that variance 
must be estimated:

ܮܦܯܤ ൌ
ߪܳ

መlogߚ 	ሺܲܤܥሻ ൅ መlogߚ෢ሺܧ05ܵݑ ሺܲܤܥሻሻට1 ൅ ሺ2ݐ െ 05ݑ
2 ሻ/2݂݀

 

Where  ݐ ൌ
ሺߚ෡log ሺܲܤܥ ሻ

෡logߚ෢ሺܧܵ ሺܲܤܥ ሻሻ/ඥ݂݀
  and 05ݑ ൌ െ1.645 

Consider

where Xi1 is exposure of interest and rest are 
confounders.  Estimated coefficient (and hence BMD) 
sensitive to model choice.  

Model selection a big topic in stats literature 
 Traditional (stepwise etc) 
 Penalty-based approaches such as the Lasso
 Bayesian approaches that place a mixture prior on 

each 
 Model averaging 

0 1 1 2 2 ...i i i p ip iY X X X         
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Let  ࡹ ൌ ሼܭܯ…,2ܯ,1ܯሽ		be the family of models over which we will 
average.  For PCB data, ܭ ൌ 27 ൌ 128 

݇ࣂ ൌ ൫݇ࢼ,  parameters characterizing kth (multiple) linear regression		൯݇ߚߪ
model 

 prior probability of the kth model	ሻ݇ܯሺ݌

 prior probability model for the regression coefficients	ሻ݇ܯ,2ߪ|݇ߚሺ݌
of	݇ܯ , where ࢑ࢼ	is ݌ ൈ 1	matrix, and ݌	= dim	ሺ݇ܯሻ 

We’ll come back presently to details (e.g. hyperpriors) 

Given priors and normal data likelihood model, for models 
k = 1,2,…K, posterior model probability for Mk is:

ሻܽݐܽܦ	|	݇ܯሺ݌ ൌ
ܽݐܽܦሺ݌ | ሻ݇ܯሺ݌ሻ݇ܯ

∑ ܽݐܽܦሺ݌ | ܭሻ݈ܯሺ݌ሻ݈ܯ
݈ൌ1

 

where    ݌ሺܽݐܽܦ	|	݇ܯሻ ൌ ࢑ࣂሺ݌ሻ݇ܯ,࢑ࣂ	|	ܽݐܽܦሺ݌׬  ࢑ࣂሻ݀݇ܯ	|

Last piece (posterior marginal likelihood) can be hard to compute.   

We’ll discuss approaches in a moment.  
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 1. Traditional Method: 2-step process:
◦ Fit Model, Test hypothesis
◦ If reject, then calculate BMD

 2. Compute Single, Model-Averaged BMD and 
BMDL via Formula: Σ Δkp(Mk|Data)

 3. Using Posterior Model Distribution: 
to summarize empirical Distribution of BMD/BMDL

2

ˆ ˆ ˆ( | )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) [ | ] ( | ) ( ) ( | )
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  
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
 

Model selection uncertainty
component

Estimated via a classical procedure or bootstrap

After calculating posterior probabilities and using 
classical procedures to estimate any quantity for a 
given model, k, use model weights to obtain the BMA 
estimate of its unconditional  expectation, variance
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 Provides helpful “Big picture” view, 
integrating estimation and testing into one 
step

 No need to conclude with a single 
model/estimate (even a model-averaged one)

 Depending on approach, can use MCMC 
samples or simulate data based on posterior 
model probabilities and parameter estimates 
to explore entire risk distribution

 Closed Form Solution (rarely exists in 
practice) 

 Approximations to Posterior Model 
Probability
◦ E.g. BIC approximation (Raftery, 1996)

 MCMC Methods, such as:
◦ Carlin and Chib Approach
◦ Reversible Jump MCMC (RJ MCMC)
◦ Stochastic Search Variable Selection (SSVS)
◦ Gibbs Variable Selection (GVS)
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 ሻ: prior variance݇ܯ	|2ߪሺ݌

݇ likelihood for model	ሻ:݇ܯ,݇ࣂ	|	ܽݐܽܦሺ݌ ൌ  ܭ…,1,2

Priors (adopting those of Hoeting et al 1999): 

ሻ݇ܯሺ݌ - ൌ  ݇ െ1 for allܭ	
,2ߪ	|	݇ࢼ - 	~	݇ܯ ,ࣆሺܰ݌  2ሻߪࢂ
|2ߪ - ݒ݊ܫ	~	݇ܯ െ ,ߥሺܽ݉݉ܽܩ  ሻߣ

◦ Assuming normal likelihood and restricting priors 
to certain conjugate distributions:
 Normal priors on Betas
 Variance prior: inverse-chi-squared distribution

◦ Results in marginal posterior distribution of the 
data Pr(Data|Mk) following an n-dimensional non-
central Student’s t distribution
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where:
◦ pk is dimension of model k
◦ n = sample size
◦ Pr(D|model, estimates) is maximized likelihood for Mk

ˆ2 log ( | , ) ( / 2) log( )

( | ) exp(0.5 ) / exp(0.5 )
k k k

k k i

BIC pr D M p n

p M D BIC BIC

 

 

 Introducing variable indicator function, g, reduces 
framework to one of fixed dimensionality

 Now, can utilize standard simulation techniques to 
estimate g and other parameters

Family of multiple linear regression models can be written: 

ܻ ൌ෍݃ሺ݆ሻ݆ܺ ߚ݆ ൅ ߝ

݌

݆ൌ1

 

where  ݃ሺ݆ሻ ൌ 1 if ݆th variable is included in model 
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 Framework implemented in WinBUGS (via R plug-in 
R2Winbugs)

݃ሺ݆ሻ	~	݈݈݅ݑ݋݊ݎ݁ܤሺ0.5ሻ for ݆ ൌ 1,2,…ܲ 

ߚ݆ 	~	ܰሺ0,  2ܸሻߪ

ݒ݊ܫ	~	2ߪ െ ,ߥሺܽ݉݉ܽܩ  ሻߣ

And likelihood: ܻ ~ ܰሺ∑ ݃ሺ݆ሻ݆ܺ ߚ݆ , 2ܲߪ
݆ൌ1  ሻܫ

Basic idea/process: 
◦ Given starting model M, propose jump to new 

model M* that differs by adding/deleting 1 variable
◦ In this case, used jump probability j(M|M*) = 

j(M*|M) = 1/P for all models
◦ Generate series of 1-to-1 deterministic functions 

that allow us to jump between model spaces of 
differing dimensions (merely tool/construct so that 
MCMC theory principles hold)
◦ Accept move with probability somewhat 

proportional to ratio of marginal likelihoods of the 
data under M* vs. M
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Left hand panel:    All Models
Right hand panel:   Only models that include exposure 
Covariate Inclusion in Model (Infinite/Extreme Values 
Truncated at 100)
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 Posterior probability for risk factor inclusion 
(i.e. probability of a nonzero effect size or 
“weight” for the jth covariate):

 To extent that priors convey a pre-data sense 
of uncertainty as to inclusion/exclusion of a 
covariate, these reflect post-data uncertainty

Pr൫݆ߚ ് 0	ห ሻܽݐܽܦ ൌ ෍ ݅ܯሺ݌ | ሻܽݐܽܦ
∋݆:݅ܯ ݅ܯ
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Bayesian Model-Averaged Estimates of Relationship
between log(PCB) exposure (standardized) and test
score, all 4 methods
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 BMA can be used to find the full empirical 
distribution of BMDs, BMDLs or other 
quantities, which captures (1) model 
uncertainty and (2) parameter uncertainty

 Lots of interesting questions 
◦ Enlarging model space
◦ Sensitivity to model space specification
◦ Better approximate solutions
◦ Improving the MCMC performance
◦ Theoretical properties of BMD, BMDL – does it solve 

the two-stage problem of the traditional approach? 
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 1. Traditional Method: 2-step process:
◦ Fit Model, Test hypothesis
◦ If reject, then calculate BMD

 2. Compute Single, Model-Averaged BMD
◦ Formula: Σ Δkp(Mk|Data)

 3. Using Posterior Model Distribution: 
◦ Simulate Data, 
◦ Fit Model, 
◦ Estimate BMD, and 
◦ Repeat to Examine Empirical Distribution of 

BMD/BMDL


