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Polychlorinated Biphenyls (PCBs)

> wideI%/ used early to mid 20t century in
transformers, capacitors, and electric
motors

» Health danger firmly established in 1970s
with poisoning from contaminated rice
oil, and evidence of carcinogenicity based
on animal studies

» Though US banned production in 1979,
PCBs considered a ubiquitous, persistent
environmental pollutant.

» PCBs store in animal fat and
bioaccumulate through food chain.

» 90% of current-day exposure via diet,
especially dairy, meat, fatty fish

Impact of Chronic Low-level Exposure
remains controversial

Well-designed studies yield different conclusions
- Methods to assess exposure/outcome differ

> Varying methods to analyze data and adjust for
potential confounders (model selection)

- Levels of exposure vary across study

> Extreme observed exposures within a given study

> Concurrent exposures to other pollutants such as
Mercury, Dioxins (possible effect modification)

> Actual chemical exposure different (209 PCB
congeners)

- Beneficial effects of supportive environment may
protect some population subgroups
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Duesseldorf Cohort
Walkowiak et al (2001)

» Cohort study of 71 mother/infant pairs
» Our subset - 88 mothers who breastfed

duration of breastfeeding)

» Outcome: Kaufman Assessment Battery for
Children (at 42 months old)

» Other possible covariates: maternal age, BMI,
alcohol consumption, socioeconomic status,
HOME score, and gender

» Exposure: log(sum of 3 main PCB congeners *

Cohort characteristics
mean std dev

Kaufman Assessment Battery for Children (K-ABC) | 102.86 11.286
log(PCB) in breast milk 8.625 0.566
HOME 3991 3.327
BMI 2481 4.563
SES 12.77 2.707
Maternal Age 29 92 4297
Child’s Gender: Male n =26 p=0.64:0.36

Female n =32
Maternal Aleohol Consumption: Yes n =53 p=0.60;0.40

No n =235

Covariates tend to be quite correlated
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Modeling Framework

Full model:
Y, = By + Billog(PCB;) * duration] + B,(HOME;)
+ 3 (BMI;) + B4(gender;) + s (maternal alcohol;)
+ B¢ (SES;) + B;(maternal age;) + ¢

where: &~N(0,0?%)

P= 7 possible predictors = 27 = 128 possible
models, assuming no interactions or other
functions of covariates




Traditional Approach

» Consider variety of plausible models, select
one, and draw inferences from single, “final”
model ignoring plausible alternatives

» Underestimates true variability and
uncertainty due to model selection process

» Results in over-confident, risky decision-
making (Draper, 1995)

lllustration with a simple case

Suppose we

DY, =B+ B X +¢

2) Test H0 :181 =0

3) Only if we reject H,, then calculate a
confidence interval on g,

What properties do we expect the confidence

interval to have?
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lllustration, continued
True coverage probability is

Pr(Confidence interval includes true ﬂ\rejected H,:/=0)

=Pr(B—se(B)Zy ., < B<B+5e(B)Z, .|| BI>£(B)Z, 1)
=1-a/ Power(p)

where Power(p) is Pr(reject Hy| gis true value)

Note that coverage probability is 0 when g =0,
and approaches a only as g grows large

Simulation for p=0

95% confidence intervals - 200 of 1000 simulations

Unconditional
confidence
intervals look as
expected
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Simulation for medium B (.05)

95% confidence intervals - 200 of 1000 simulations
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Implications in practice

Traditional practice of picking a best model
then reporting confidence intervals for
coefficients may be biased, especially in
settings where there is a high degree of noise.

Implications particularly problematic in
environmental risk assessment where we use
estimated coefficient of exposure of interest
to predict a “safe” dose. Lets take a brief
diversion to see how this works.

Environmental Risk Assessment -

estimating a Benchmark Dose (BMD)
Step 1: Establish that exposure of interest has an
adverse effect

Step 2: Benchmark Dose (BMD) solves

P(d) - P(0) = BMR
where P(d) is probability of an adverse effect and
BMR (benchmark response) = 0.01, 0.05 or 0.1

Step 3: Compute lower
confidence limit, BMDL

Step 4: Linearly extrapolate

Benchmark Dose

Estimated dose response curve
Upper limit on dose response curve
BMD

BMDL
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Benchmark Dose estimation for
continuous outcomes

Need to specify a threshold level of Y that can be
considered adverse. E.qg.
% Pick a cutoff that has some clinical meaning
= Scoring below 75 on an IQ test
= Having a BMI above 25 (or 30?)
= Scoring below 85 on K-ABC assessment

% Pick a cutoff that corresponds to a lower (or upper)
percentile (usually 1% or 5%) of general population

To do analysis, can dichotomize outcomes
(inefficient) or do regression analysis and then
compute the tail probabilities

BMDs derived from linear regression
suppose Y, = [y + B X + B, X, €

Where X, is exposure of interest and X, is a confounder. If lower
values of outcome are “adverse”, then

P(c) = P(Y <¢|X, =%, X, =X,) =c1>(c_ﬂ° _ﬁlxl_ﬂZXZJ
(2

And solution to Pc)-P(O)=BMR is:

_%
BMD = 5
where Q =&~ 1(P(0)) — @ 1(P(0) + BMR)

And solution is the same for all values of the confounder, X,
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Lower Bound: BMDL

Where lower outcome are adverse, Budtz-
Jorgensen (2001) provides an approximation
to BMDL that accounts for fact that variance
must be estimated:

o
BMDL = Q
Brog (pcr) + UosSE (Biog (PCB))\/l + (t2 —uds)/2df
Where ¢ = — s ¢c5) and ug; = —1.645

ﬁ(ﬁlog (PCB ))/W

BMD estimation in the context
of model uncertainty

Consider
Yi =Ly + B Xy + B Xy o+ B Xy + &

where X;, is exposure of interest and rest are
confounders. Estimated coefficient (and hence BMD)
sensitive to model choice.

Model selection a big topic in stats literature
» Traditional (stepwise etc)
» Penalty-based approaches such as the Lasso

» Bayesian approaches that place a mixture prior on
each B
» Model averaging
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Bayesian model averaging

Let M = {M; M,,...My} be the family of models over which we will

average. For PCB data, K =27 = 128

0, = (ﬁk,oﬁk) parameters characterizing kth (multiple) linear regression

model
p(M,) prior probability of the kth model

p(Belo?, M) prior probability model for the regression coefficients

of M,,, where B is p x 1 matrix, and p = dim(M,,)

We’ll come back presently to details (e.g. hyperpriors)

BMA, Continued

Given priors and normal data likelihood model, for models
k =1,2,...K, posterior model probability for M, is:

p(Data | My)p(My)
K p(Data | M))p(M,;)

p(M, | Data) =

where p(Data | M) = [p(Data | 0y, M;)p(6; | M;)dO,
Last piece (posterior marginal likelihood) can be hard to compute.

We'll discuss approaches in a moment.

27/05/2013
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We'll compare three approaches to
estimation of a BMD and BMDL

» 1. Traditional Method: 2-step process:
> Fit Model, Test hypothesis
- If reject, then calculate BMD
» 2. Compute Single, Model-Averaged BMD and
BMDL via Formula: £ A, p(M,|Data)
» 3. Using Posterior Model Distribution:
to summarize empirical Distribution of BMD/BMDL

Use Posterior Model Probabilities to
Estimate Averaged Quantities of Interest
After calculating posterior probabilities and using

classical procedures to estimate any quantity for a

given model, A4, use model weights to obtain the BMA
estimate of its unconditional expectation, variance

Model selection uncertainty

Component
Aan = 2 A B(M, | D) — A -
;MA(A) 2 VIAIM, 1M, [D)+Y", (A, ~Agya)* B(M, | D)

_/

Ve

Estimated via a classical procedure or bootstrap
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Empirical Distribution of BMD/BMDL

» Provides helpful “Big picture” view,
integrating estimation and testing into one
step

» No need to conclude with a single
model/estimate (even a model-averaged one)

» Depending on approach, can use MCMC
samples or simulate data based on posterior
model probabilities and parameter estimates
to explore entire risk distribution

First we need to discuss Approaches to BMA

» Closed Form Solution (rarely exists in
practice)
» Approximations to Posterior Model
Probability
- E.g. BIC approximation (Raftery, 1996)
» MCMC Methods, such as:
> Carlin and Chib Approach
> Reversible Jump MCMC (R} MCMC)
> Stochastic Search Variable Selection (SSVS)
> Gibbs Variable Selection (GVS)

27/05/2013
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Assumed Model and Priors

p(c?| M},): prior variance
p(Data | 8, M,): likelihood for model k =1,2,...K
Priors (adopting those of Hoeting et al 1999):

- p(M,) = K~ ! forall k
- Bk | 02' Mk ~ Np(""i VUZ)

- 0% My ~ Inv — Gamma(v, 1)

Closed Form Solution

> Assuming normal likelihood and restricting priors
to certain conjugate distributions:
- Normal priors on Betas
- Variance prior: inverse-chi-squared distribution

- Results in marginal posterior distribution of the
data Pr(Data|M,) following an n-dimensional non-
central Student’s t distribution

27/05/2013
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BIC Approximation

BIC = 2log pr(D|6,,M,)~(p, /2)log(n)
p(M, | D) =exp(0.5BIC,)/ > exp(0.5BIC,)

where:
° py is dimension of model k
> n = sample size
> Pr(D|model, estimates) is maximized likelihood for M,

GVS Method

Family of multiple linear regression models can be written:
p
Y = Zg(j)Xj.Bj +e
j=1

where g(j) = 1 if jth variable is included in model

» Introducing variable indicator function, g, reduces
framework to one of fixed dimensionality

» Now, can utilize standard simulation techniques to
estimate g and other parameters

27/05/2013
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GVS (continued)

» Framework implemented in WinBUGS (via R plug-in
R2Winbugs)

g(j) ~ Bernoulli(0.5) for j =1,2,..P
B; ~N(0,0%V)
02 ~ Inv — Gamma(v, 1)

And likelihood: Y ~ N(37_; (DX 8, 0°1)

Reversible Jump MCMC

Basic idea/process:

- Given starting model M, propose jump to new
model M* that differs by adding/deleting 1 variable

> In this case, used jump probability j(M|M*) =
j(M*|M) = 1/P for all models

> Generate series of 1-to-1 deterministic functions
that allow us to jump between model spaces of
differing dimensions (merely tool/construct so that
MCMC theory principles hold)

> Accept move with probability somewhat

proportional to ratio of marginal likelihoods of the
data under M* vs. M

27/05/2013
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Posterior Model Probabilities,
Calculation Methods Compared
M, Pr(M; | Data)
Exact BIC Approx | GVS | RJ MCMC

(int, HOME) 0.2453 0.2561 0.506 | 0.2652
(int) 0.1887 0.0152 0.104 | 0.1997
(int, log(PCB), HOME) 0.0648 0.1809 0.136 | 0.0587
(int, HOME, maternal.age) 0.0464 0.0842 0.056 | 0.0441
(int, gender) 0.0384 0.0058 0.017 | 0.0421
(int, HOME, gender) 0.0368 0.0538 0.037 | 0.0330
(int, log(PCB)) 0.0295 0.0035 0.009 | 0.0256
(int, HOME, maternal.alcohol) | 0.0281 0.0310 0.017 | 0.0428
(int, HOME, SES) 0.0277 0.0274 0.015 | 0.0227
(int, HOME, BMI) 0.0275 0.03033 0.0208 | 0.0237
total posterior prob of top 10 | 0.7331 06872 0925 | 0.7180

Empirical BMD Distributions

Left hand panel: All Models
Right hand panel: Only models that include exposure
Covariate Inclusion in Model (Infinite/Extreme Values

Truncated at 100)

Histogram of BMD.est.cutoff

Histogram of BMD.nonzero.subset

empirical BMD, with fruncation
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Empirical BMDL Distributions:
(1) unconditional model posterior
distribution, and (2) conditional on
exposure being included in the model
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BMDLs based on Theoretical
Approximation (Budtz-Jorgensen)
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Posterior inclusion probabilities

» Posterior probability for risk factor inclusion
(i.e. probability of a nonzero effect size or
“weight” for the jth covariate):

Pr(ﬂj #0 | Data) = z p(M; | Data)
» To extent that priors convey a pre-data sense

of uncertainty as to inclusion/exclusion of a
covariate, these reflect post-data uncertainty

Covariate Posterior Probabilities

Covariate Method
Exact BIC Approx | GVS | RJ MCMC
| log(PCB) | 0.1797 | 0.3867 | 0.181 | 0.1799
| HOME | 0.5867 | 0.9569 | 0.837 | 0.5888
BMI 0.1044 | 0.1155 0.042 | 0.1088
gender 0.1473 | 01772 0.072 | 0.1508
maternal alcohol | 0.1022 | 0.1196 0.036 | 0.1060
| SES | 0.1137 | 0.1056 | 0.036 | 0.1202
| maternal age | 0.1344 | 0.2100 ‘ 0.087 ‘ 0.1370

27/05/2013
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Examining the whole posterior distribution

Histogram of beta.lumilch
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Use Posterior Model Probabilities to

Estimate Averaged

Quantities of Interest

Bayesian Model-Averaged Estimates of Relationship
between log(PCB) exposure (standardized) and test

score, all 4 methods

BMA Technique ,3[Dg[PCBJ(B_-”I«f.4} var{l'S]O;[PCBJ(BJLfA}‘J Pr{IS]OSLPCB] £0)
Exact -0.3553 1.1067 01797

BIC Approx -0.8538 1.7759 0.3867

GVS -0.4005 2.9205 0181

RJ MCMC -0.3639 1.1414 0.1799

27/05/2013
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Single, Model-Averaged BMD/BMDL

ABMA = Zkﬁk ﬁ(Mk | D)
Vaua(8) =Y. VIA[M,1p(M, | D)+ (&, ~Agys)? P(M, | D)

BMA Technique | 3, pc5)(BMA) | var(B,,,pcs(BMA)) | BMD | BMDL
Exact -0.3553 1.1067 11.5406 | 1.9458
BIC Approx -0.8538 1.7759 48023 | 1.3348
GVS -0.4005 2.9205 10.2382 | 0.7793
RJ MCMC -0.3639 1.1414 | 11.2678 | 1.9142 |

Concluding remarks

» BMA can be used to find the full empirical
distribution of BMDs, BMDLs or other
quantities, which captures (1) model
uncertainty and (2) parameter uncertainty

» Lots of interesting questions
> Enlarging model space
> Sensitivity to model space specification
- Better approximate solutions
> Improving the MCMC performance

> Theoretical properties of BMD, BMDL - does it solve
the two-stage problem of the traditional approach?
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Closed Form Solution (Raftery et al. 1997)

assuming a likelihood of the form:

Ynx1 = Xﬁpxl + &nx1 with & ~ JV(O,OQIHXH)

and restricting priors to certain conjugate distributions:

B ~ Np(p.o2V) and

=
>

~ X

2
(3]

E

27/05/2013
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Closed Form Solution (Continued)

results in marginal posterior distribution of the data,
p(Data | My) = [ p(Data | 0y, My)p(0); | My)dO,

following an n-dimensional, non-central Student’s t distribution with v degrees

of freedom,

mean Xy and variance v/(v — 2)A(I 4+ X, V. X} ) [Hoeting et al. 1999

Closed Form Solution (Continued)

r(#)(UA)O.SU
7r0.5nr(%) | T+ Xk“'kX,’g |05

p(Data | M) =

27/05/2013
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Reversible Jump MCMC [Green 1995]

General Algorithm for RJ MCMC [Gelman et al. 2004]

e Given starting model M, propose new model M * that differs by adding /deleting
1 variable

e Generate a vector u from a continuous proposal density g(u | 8,7, M,

M*)

e Generate a series of one-to-one deterministic functions with:

= (B v*) = garar+(Bar, 1)

R} MCMC (Continued)

- par + dim(u) = pps+ + dim(u*)

— functions merely tool to match dimensions when jumping from M to

M*

— note M, M*differ in dimension by one (1)

27/05/2013
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R} MCMC (Continued)

® Accept proposed move to M* with acceptance probability:

Pr(Y | M*) Pr(B8%,. | M*)Pr(M*)j(M | M*)q(u* | 3%, M*, M)

= min{l,

Pr(Y | M) Pr(Bas | M) Pr(M)j(M* | M)g(u | By, M, M*)
Igar ar+(Bar, 1)

A(Bas.u)

x det( )}

R} MCMC (Continued)

Further Simplification of Algorithm [Suggested by Clyde in commentary for
Hoeting et al. 1999]

e Given the normal prior on 3 for all 128 models, the posterior distribution
B+ | M* is available in closed form

o take g(u | By, M, M*) to be the posterior distribution of 37, | M*

e acceptance probability for jump from M to M™ simplifies to:

Pr(Y'[M*) Pr(M*)j (M|M*) t(agﬂ-f:M*(ﬂMsu))}
Pr(Y | M) Pr(M)j (M| M) (B

a = mmn{l,

27/05/2013

25



Ways to Quantify/Depict BMD and BMDL

» 1. Traditional Method: 2-step process:
> Fit Model, Test hypothesis
- If reject, then calculate BMD
» 2. Compute Single, Model-Averaged BMD
> Formula: £ A p(M,|Data)
» 3. Using Posterior Model Distribution:
> Simulate Data,
> Fit Model,
> Estimate BMD, and

- Repeat to Examine Empirical Distribution of
BMD/BMDL

27/05/2013
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